

Welcome to the thirty bees’ PostNL PHP library documentation!

These API bindings make it easy to connect to PostNL’s CIF API, used for retrieving delivery options, printing shipment labels and finding shipment statuses.

	It has a simple interface for connecting with either the legacy, SOAP or REST API.

	Abstracts away direct requests to the API, allowing you to focus on the code itself. The object structure is based on the SOAP API.

	Can merge PDF labels (both A6 and A4) and automatically sends concurrent requests when necessary, making batch processing a lot easier easier.

	Follows PHP standards, some of them are:

	PSR-7 interfaces for requests and responses. Build and process functions are provided so you can create your own mix of batch requests.

	PSR-6 caching, so you can use your favorite cache for caching API responses.

	PSR-3 logging. You can log the requests and responses for debugging purposes.

	Framework agnostic. You can use this library with any framework.

	A custom HTTP client interface so you can use the HTTP client of your choice. Using the Guzzle client is strongly recommended, because of its higher performance and superb error correction.

<?php
$postnl = new PostNL(...);
$timeframes = $postnl->getTimeframes(
 (new GetTimeframes())
 ->setTimeframe([Timeframe::create([
 'CountryCode' => 'NL',
 'StartDate' => date('d-m-Y', strtotime('+1 day')),
 'EndDate' => date('d-m-Y', strtotime('+14 days')),
 'HouseNr' => 42,
 'PostalCode' => '2132WT',
 'SundaySorting' => true,
 'Options' => ['Daytime', 'Evening'],
])])
);
var_dump($timeframes);

Developer Guide

	Overview
	Requirements

	Installation
	Bleeding edge

	License

	Contributing
	Guidelines

	Running the tests

	Quickstart
	Making a Request
	Requesting timeframes, locations and the delivery date

	Requesting a merged label

	Building Requests
	Sending concurrent requests

	Using Response objects

	Services
	Barcode service
	Generate a single barcode

	Generate a barcode by country code

	Generate multiple barcodes by using country codes

	Labelling service
	Generate a single label

	Generate multiple shipment labels

	Confirming service

	Shipping status service
	Current Status by Barcode

	Current Status by Reference

	Current Status by Status Code

	Current Status by Phase Code

	Complete Status by Barcode

	Complete Status by Reference

	Complete Status by Status Code

	Complete Status by Phase Code

	Get Signature

	Delivery date service
	Get the Delivery Date

	Get the Shipping Date

	Timeframe service

	Location service
	Get Nearest Locations

	Get Nearest Locations by Coordinates

	HTTP Client

	Caching

	Logging

	Authors

Overview

Requirements

	PHP 5.5.5 or higher

	JSON extension

	XML Support (SimpleXMLElement)

	By default this library utilizes cURL for communication.

	To use the cURL client, you must have a recent version of cURL >= 7.19.4
compiled with OpenSSL and zlib.

Note

If you use the Guzzle client, you do not need to have the cURL extension installed.
As an alternative, you can enable allow_url_fopen in your system’s php.ini. The included Guzzle version can
work with the PHP stream wrapper to handle HTTP requests. For more information check out
Guzzle’s documentation [http://guzzle.readthedocs.io/en/stable/overview.html].

Installation

The recommended way to install the PostNL library is with
Composer [http://getcomposer.org]. Composer is a dependency management tool
for PHP that allows you to declare the dependencies your project needs and
installs them into your project.

Install Composer
curl -sS https://getcomposer.org/installer | php

Install the PostNL library:

php composer.phar require thirtybees/postnl-api-php:~1.0

You can optionally add Guzzle as a dependency using the composer.phar CLI:

php composer.phar require guzzlehttp/guzzle:~6.3

Alternatively, you can specify Guzzle as a dependency in your project’s
existing composer.json file:

 {
 "require": {
 "guzzlehttp/guzzle": "~6.3"
 }
}

After installing, you need to require Composer’s autoloader:

require 'vendor/autoload.php';

You can find out more on how to install Composer, configure autoloading, and
other best-practices for defining dependencies at getcomposer.org [http://getcomposer.org].

Bleeding edge

During your development, you can keep up with the latest changes on the master
branch by setting the version requirement for this library to ~1.0@dev.

{
 "require": {
 "thirtybees/postnl-api-php": "~1.0@dev"
 }
}

License

Licensed using the MIT license [http://opensource.org/licenses/MIT].

Copyright (c) 2017-2018 thirty bees <https://github.com/thirtybees>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Contributing

Guidelines

	This library utilizes PSR-1, PSR-2, PSR-3, PSR-4, PSR-6 and PSR-7.

	The library is meant to be lean, fast and sticks to the standards of the SOAP API. This means
that not every feature request will be accepted.

	The PostNL library has a minimum PHP version requirement of PHP 5.5.5. Pull requests must
not require a PHP version greater than PHP 5.5.5.

	All pull requests must include unit tests to ensure the change works as
expected and to prevent regressions.

Running the tests

In order to contribute, you’ll need to checkout the source from GitHub and
install the dependencies using Composer:

git clone https://github.com/thirtybees/postnl-api-php.git
cd postnl-api-php && curl -s http://getcomposer.org/installer | php && ./composer.phar install --dev

This library is unit tested with PHPUnit. Run the tests using the included PHPUnit version:

cd tests/
php ../vendor/bin/phpunit --testdox

Note

You’ll need to use PHP 5.6 or newer in order to perform
the tests.

Quickstart

This page provides a quick introduction to this library and a few examples.
If you do not have the library installed, head over to the Installation
page.

Making a Request

You can send requests by creating the request objects and passing them to one of the functions in the main PostNL
class.

Requesting timeframes, locations and the delivery date

You can the timeframes, locations and delivery date at once to quickly retrieve all the available delivery options.
Here’s how it is done:

<?php

	use ThirtyBeesPostNLEntityLabel;

	use ThirtyBeesPostNLPostNL;
use ThirtyBeesPostNLEntityCustomer;
use ThirtyBeesPostNLEntityAddress;
use ThirtyBeesPostNLEntityShipment;
use ThirtyBeesPostNLEntityDimension;

require_once __DIR__.’/vendor/autoload.php’;

// Your PostNL credentials
$customer = Customer::create([

‘CollectionLocation’ => ‘123456’,
‘CustomerCode’ => ‘DEVC’,
‘CustomerNumber’ => ‘11223344’,
‘ContactPerson’ => ‘Lesley’,
‘Address’ => Address::create([

‘AddressType’ => ‘02’,
‘City’ => ‘Hoofddorp’,
‘CompanyName’ => ‘PostNL’,
‘Countrycode’ => ‘NL’,
‘HouseNr’ => ‘42’,
‘Street’ => ‘Siriusdreef’,
‘Zipcode’ => ‘2132WT’,

]),
‘Email’ => ‘michael@thirtybees.com’,
‘Name’ => ‘Michael’,

]);

$apikey = ‘YOUR_API_KEY_HERE’;
$sandbox = true;

$postnl = new PostNL($customer, $apikey, $sandbox, PostNL::MODE_SOAP);

$mondayDelivery = true;
$deliveryDaysWindow = 7; // Amount of days to show ahead
$dropoffDelay = 0; // Amount of days to delay delivery

$cutoffTime = ‘15:00:00’;
$dropoffDays = [1 => true, 2 => true, 3 => true, 4 => true, 5 => true, 6 => false, 7 => false];
foreach (range(1, 7) as $day) {

	if (isset($dropoffDays[$day])) {

	
	$cutOffTimes[] = new CutOffTime(

	str_pad($day, 2, ‘0’, STR_PAD_LEFT),
date(‘H:i:00’, strtotime($cutoffTime)),
true

);

}

}

	$response = $postnl->getTimeframesAndNearestLocations(

	
	(new GetTimeframes())

	
	->setTimeframe([

	
	(new Timeframe())

	->setCountryCode(‘NL’)
->setEndDate(date(‘d-m-Y’, strtotime(” +{$deliveryDaysWindow} days +{$dropoffDelay} days”)))
->setHouseNr(‘66’)
->setOptions([‘Morning’, ‘Daytime’])
->setPostalCode(‘2132WT’)
->setStartDate(date(‘d-m-Y’, strtotime(” +1 day +{$request[‘dropoff_delay’]} days”)))
->setSundaySorting(!empty($mondayDelivery) && date(‘w’, strtotime(“+{$dropoffDelay} days”)))

]),

	(new GetNearestLocations())

	->setCountrycode($request[‘cc’])
->setLocation(

	(new Location())

	->setAllowSundaySorting(!empty($mondayDelivery))
->setDeliveryOptions([‘PG’, ‘PGE’])
->setOptions([‘Daytime’])
->setHouseNr(‘66’)
->setPostalcode(‘2132WT’)

),

	(new GetDeliveryDate())

	
	->setGetDeliveryDate(

	
	(new GetDeliveryDate())

	->setAllowSundaySorting(!empty($mondayDelivery))
->setCountryCode(‘NL’)
->setCutOffTimes($cutOffTimes)
->setHouseNr($request[‘number’])
->setOptions($deliveryOptions)
->setPostalCode(‘2132WT’)
->setShippingDate(date(‘d-m-Y H:i:s’))
->setShippingDuration(strval(1 + (int) $dropoffDelay))

)
->setMessage(new Message())

);

The response variable will contain the timeframes, nearest locations and delivery date. The reponse will be an array with the keys
timeframes, locations and delivery_date. You can then use the delivery date to prune any timeframes that can no longer be guaranteed.

Requesting a merged label

Here is how you can request two labels and have them merged into a single PDF automatically:

<?php
use ThirtyBees\PostNL\Entity\Label;
use ThirtyBees\PostNL\PostNL;
use ThirtyBees\PostNL\Entity\Customer;
use ThirtyBees\PostNL\Entity\Address;
use ThirtyBees\PostNL\Entity\Shipment;
use ThirtyBees\PostNL\Entity\Dimension;

require_once __DIR__.'/vendor/autoload.php';

// Your PostNL credentials
$customer = Customer::create([
 'CollectionLocation' => '123456',
 'CustomerCode' => 'DEVC',
 'CustomerNumber' => '11223344',
 'ContactPerson' => 'Lesley',
 'Address' => Address::create([
 'AddressType' => '02',
 'City' => 'Hoofddorp',
 'CompanyName' => 'PostNL',
 'Countrycode' => 'NL',
 'HouseNr' => '42',
 'Street' => 'Siriusdreef',
 'Zipcode' => '2132WT',
]),
 'Email' => 'michael@thirtybees.com',
 'Name' => 'Michael',
]);

$apikey = 'YOUR_API_KEY_HERE';
$sandbox = true;

$postnl = new PostNL($customer, $apikey, $sandbox, PostNL::MODE_SOAP);

$barcodes = $postnl->generateBarcodesByCountryCodes(['NL' => 2]);

$shipments = [
 Shipment::create([
 'Addresses' => [
 Address::create([
 'AddressType' => '01',
 'City' => 'Utrecht',
 'Countrycode' => 'NL',
 'FirstName' => 'Peter',
 'HouseNr' => '9',
 'HouseNrExt' => 'a bis',
 'Name' => 'de Ruijter',
 'Street' => 'Bilderdijkstraat',
 'Zipcode' => '3521VA',
]),
],
 'Barcode' => $barcodes['NL'][0],
 'Dimension' => new Dimension('1000'),
 'ProductCodeDelivery' => '3085',
]),
 Shipment::create([
 'Addresses' => [
 Address::create([
 'AddressType' => '01',
 'City' => 'Utrecht',
 'Countrycode' => 'NL',
 'FirstName' => 'Peter',
 'HouseNr' => '9',
 'HouseNrExt' => 'a bis',
 'Name' => 'de Ruijter',
 'Street' => 'Bilderdijkstraat',
 'Zipcode' => '3521VA',
]),
],
 'Barcode' => $barcodes['NL'][1],
 'Dimension' => new Dimension('1000'),
 'ProductCodeDelivery' => '3085',
]),
];

$label = $postnl->generateLabels(
 $shipments,
 'GraphicFile|PDF', // Printertype (only PDFs can be merged -- no need to use the Merged types)
 true, // Confirm immediately
 true, // Merge
 Label::FORMAT_A4, // Format -- this merges multiple A6 labels onto an A4
 [
 1 => true,
 2 => true,
 3 => true,
 4 => true,
] // Positions
);

file_put_contents('labels.pdf', $label);

This will write a labels.pdf file that looks like this:

[image: _images/mergedlabels.png]
The PostNL client constructor accepts a few options:

	customer

	Customer - required

The Customer object that is used to configure the client and let PostNL know
who is requesting the data.

 <?php
 // Create a new customer
 $client = new Customer::create([
 'CollectionLocation' => '123456', // Your collection location
 'CustomerCode' => 'DEVC', // Your Customer Code
 'CustomerNumber' => '11223344', // Your Customer Number
 'GlobalPackBarcodeType('CX'), // Add your GlobalPack information if you need
 'GlobalPackCustomerCode('1234'), // to create international shipment labels
 'ContactPerson' => 'Lesley',
 'Address' => Address::create([
 'AddressType' => '02', // This address will be shown on the labels
 'City' => 'Hoofddorp',
 'CompanyName' => 'PostNL',
 'Countrycode' => 'NL',
 'HouseNr' => '42',
 'Street' => 'Siriusdreef',
 'Zipcode' => '2132WT',
]),
 'Email' => 'michael@thirtybees.com',
 'Name' => 'Michael',
]);

	apikey

	string``|``UsernameToken - required

The apikey to use for the API. Note that if you want to switch from the legacy API to
the new SOAP and REST API you will have to request a new key. The username can be omitted.
If you want to connect to the legacy API you should pass a UsernameToken with your username and token set:

<?php
$usernameToken = new UsernameToken('username', 'token');

You can request an API key for the sandbox environment on this page: https://developer.postnl.nl/content/request-api-key
For a live key you should contact your PostNL account manager.

	sandbox

	bool - required

Indicate whether you’d like to connect to the sandbox environment. When false the library uses the live endpoints.

	mode

	int - optional, defaults to REST

This library provides three ways to connect to the API:

	1: REST mode

	2: SOAP mode

	5: Legacy mode – This is the previous SOAP API, which at the moment of writing is still in operation.

Building Requests

In most cases you would want to create request objects and pass them to one of the methods of the main object (PostNL).
One exception is the Barcode Service. You can directly request multiple barcodes and for multiple countries at once. The library
will internally handle the concurrent requests to the API.

In the above-mentioned merged label example we are passing two Shipment objects, filled with the needed information to generate the labels.
To merge those labels manually, we have to set the merge option to false and can omit both the format and positions parameters.
This will in turn make the library return GenerateLabelResponse objects.

These are in line with the GenerateLabelResponse nodes generated by the SOAP API, even when using the REST API.
The main reason for this standardization is that the SOAP API has better documentation. If you need a quick reference of
the GenerateLabelResponse object, you can either look up the code of the GenerateLabelResponse class or
navigate to the API documentation directly [https://developer.postnl.nl/apis/labelling-webservice/documentation#toc-9].

Sending concurrent requests

There is no direct need to manually handle concurrent requests. This library handles most cases automatically
and even provides a special function to quickly grab timeframe and location data for frontend delivery options widgets.

In case you manually want to send a custom mix of requests, you can look up the corresponding functions in the
Service class of your choice and call the `buildXXXXXXRequest()` functions manually. Thanks to the PSR-7 standard
used by this library you can use the Request object that is returned to access the full request that would otherwise
be sent directly. To pick up where you left off you can then grab the response and pass it to one of the processXXXXXXXResponse()`
functions of the Service class. The easiest method is to grab the raw HTTP message and parse it with the included PSR-7 library.
An example can be found in the cURL client [https://github.com/thirtybees/postnl-api-php/blob/b3837cec23e1b8e806c5ea29d79d0fae82a0e956/src/HttpClient/CurlClient.php#L258].

Using Response objects

Note

This section refers to Response objects returned by the library, not the standardized PSR-7 messages.

As soon as you’ve done your first request with this library, you will find that it returns a Response object.
As mentioned in the Building Requests section, these Response objects are based on the SOAP API, regardless of the mode set.
The properties of a Response object can be looked up in the code, but it can be a bit confusing at times, since the
Response object will likely not contain all properties at once. It often depends on the context of the request. For this reason,
you’re better off by having a look at the SOAP API documentation [https://developer.postnl.nl] directly or by checking out some of
the examples in this documentation.

Services

Barcode service

Note

PostNL API documentation for this service:

https://developer.postnl.nl/apis/barcode-webservice/overview

The barcode service allows you to generate barcodes for your shipment labels.
Usually you would reserve an amount of barcodes, generate shipping labels and eventually confirm those labels.
According to PostNL, this flow is necessary for a higher delivery success rate.

Generate a single barcode

You can generate a single barcode for domestic shipments as follows:

<?php
$postnl->generateBarcode();

This will generate a 3S barcode meant for domestic shipments only.

The function accepts the following arguments:

	type

	string - optional, defaults to 3S

The barcode type. This is 2S/3S for the Netherlands and EU Pack Special shipments.
For other destinations this is your GlobalPack barcode type.
For more info, check the PostNL barcode service page [https://developer.postnl.nl/apis/barcode-webservice/how-use#toc-7].

	range

	string - optional, can be found automatically

For domestic and EU shipments this is your customer code. Otherwise, your GlobalPack customer code.

	serie

	string - optional, can be found automatically

This is the barcode range for your shipment(s).
Check the PostNL barcode service page [https://developer.postnl.nl/apis/barcode-webservice/how-use#toc-7]
for the ranges that are available.

	eps

	bool - optional, defaults to false

Indicates whether this is an EU Pack Special shipment.

Generate a barcode by country code

It is possible to generate a barcode by country code. This will let the library figure out what
type, range, serie to use.

Example:

<?php
$postnl->generateBarcodeByCountryCode('BE');

This will generate a 3S barcode meant for domestic shipments only.

The function accepts the following arguments:

	iso

	string - required

The two letter country ISO code. Make sure you use UPPERCASE.

Generate multiple barcodes by using country codes

You can generate a whole batch of barcodes at once by providing country codes and the
amounts you would like to generate.

Example:

<?php
$postnl->generateBarcodeByCountryCode(['NL' => 2, 'DE' => 3]);

This will return a list of barcodes:

<?php
[
 'NL' => [
 '3SDEVC11111111111',
 '3SDEVC22222222222',
],
 'DE' => [
 '3SDEVC111111111',
 '3SDEVC222222222',
 '3SDEVC333333333',
],
];

The function accepts the following argument:

	type

	string - required

An associative array with country codes as key and the amount of barcodes you’d like to generate
per country as the value.

Labelling service

Note

PostNL API documentation for this service:

https://developer.postnl.nl/apis/labelling-webservice

The labelling service allows you to create shipment labels and optionally confirm the shipments.
The library has a built-in way to merge labels automatically, so you can request labels for multiple shipments at once.

Generate a single label

The following example generates a single shipment label for a domestic shipment:

<?php
$postnl = new PostNL(...);
$postnl->generateLabel(
 Shipment::create()
 ->setAddresses([
 Address::create([
 'AddressType' => '01',
 'City' => 'Utrecht',
 'Countrycode' => 'NL',
 'FirstName' => 'Peter',
 'HouseNr' => '9',
 'HouseNrExt' => 'a bis',
 'Name' => 'de Ruijter',
 'Street' => 'Bilderdijkstraat',
 'Zipcode' => '3521VA',
]),
 Address::create([
 'AddressType' => '02',
 'City' => 'Hoofddorp',
 'CompanyName' => 'PostNL',
 'Countrycode' => 'NL',
 'HouseNr' => '42',
 'Street' => 'Siriusdreef',
 'Zipcode' => '2132WT',
]),
])
 ->setBarcode($barcode)
 ->setDeliveryAddress('01')
 ->setDimension(new Dimension('2000'))
 ->setProductCodeDelivery('3085'),
 'GraphicFile|PDF',
 false
);

This will create a standard shipment (product code 3085). You can access the label (base64 encoded PDF) this way:

<?php
$pdf = base64_decode($label->getResponseShipments()[0]->getLabels()[0]->getContent());

This function accepts the following arguments:

	shipment

	Shipment - required

The Shipment object. Visit the PostNL API documentation to find out what a Shipment object consists of.

	printertype

	string - optional, defaults to GraphicFile|PDF

The list of supported printer types can be found on this page: https://developer.postnl.nl/browse-apis/send-and-track/labelling-webservice/documentation-soap/

	confirm

	string - optional, defaults to true

Indicates whether the shipment should immediately be confirmed.

Generate multiple shipment labels

The following example shows how a label can be merged:

<?php
$shipments = [
 Shipment::create([
 'Addresses' => [
 Address::create([
 'AddressType' => '01',
 'City' => 'Utrecht',
 'Countrycode' => 'NL',
 'FirstName' => 'Peter',
 'HouseNr' => '9',
 'HouseNrExt' => 'a bis',
 'Name' => 'de Ruijter',
 'Street' => 'Bilderdijkstraat',
 'Zipcode' => '3521VA',
]),
],
 'Barcode' => $barcodes['NL'][0],
 'Dimension' => new Dimension('1000'),
 'ProductCodeDelivery' => '3085',
]),
 Shipment::create([
 'Addresses' => [
 Address::create([
 'AddressType' => '01',
 'City' => 'Utrecht',
 'Countrycode' => 'NL',
 'FirstName' => 'Peter',
 'HouseNr' => '9',
 'HouseNrExt' => 'a bis',
 'Name' => 'de Ruijter',
 'Street' => 'Bilderdijkstraat',
 'Zipcode' => '3521VA',
]),
],
 'Barcode' => $barcodes['NL'][1],
 'Dimension' => new Dimension('1000'),
 'ProductCodeDelivery' => '3085',
]),
];

$label = $postnl->generateLabels(
 $shipments,
 'GraphicFile|PDF', // Printertype (only PDFs can be merged -- no need to use the Merged types)
 true, // Confirm immediately
 true, // Merge
 Label::FORMAT_A4, // Format -- this merges multiple A6 labels onto an A4
 [
 1 => true,
 2 => true,
 3 => true,
 4 => true,
] // Positions
);

file_put_contents('labels.pdf', $label);

By setting the merge flag it will automatically merge the labels into a PDF string.

The function accepts the following arguments:

	shipments

	Shipment[] - required

The Shipment objects. Visit the PostNL API documentation to find out what a Shipment object consists of.

	printertype

	string - optional, defaults to GraphicFile|PDF

The list of supported printer types can be found on this page: https://developer.postnl.nl/browse-apis/send-and-track/labelling-webservice/documentation-soap/

	confirm

	string - optional, defaults to true

Indicates whether the shipment should immediately be confirmed.

	merge

	bool - optional, default to false

This will merge the labels and make the function return a pdf string of the merged label.

	format

	int - optional, defaults to 1 (FORMAT_A4)

This sets the paper format (can be A4 or A4).

	positions

	bool[] - optional, defaults to all positions

This will set the positions of the labels. The following image shows the available positions, use true or false to resp. enable or disable a position:

[image: _images/positions.png]

Confirming service

Note

PostNL API documentation for this service:

https://developer.postnl.nl/apis/confirming-webservice

You can confirm shipments that have previously not been confirmed. The available methods are confirmShipment and confirmShipments.
The first method accepts a single Shipment object whereas the latter accepts an array of `Shipment`s.
The output is a boolean, or an array with booleans in case you are confirming multiple shipments. The results will be tied to the keys of your request array.

Shipping status service

Note

PostNL API documentation for this service:

https://developer.postnl.nl/apis/shippingstatus-webservice

This service can be used to retrieve shipping statuses. For a short update use the CurrentStatus method, otherwise CompleteStatus will provide you with a long list containing the shipment’s history.

Current Status by Barcode

Gets the current status by Barcode

<?php
 $this->getClient()->getCurrentStatus((new CurrentStatus())
 ->setShipment(
 (new Shipment())
 ->setBarcode('3SDEVC98237423')
)
);

	statusrequest

	CurrentStatus - required

The CurrentStatus object. Check the API documentation for all possibilities.

Current Status by Reference

Gets the current status by reference. Note that you must have set the reference on the shipment label first.

<?php
 $this->getClient()->getCurrentStatusByReference((new CurrentStatusByReference())
 ->setShipment(
 (new Shipment())
 ->setReference('myref')
)
);

	statusrequest

	CurrentStatusByReference - required

The CurrentStatusByReference object. Check the API documentation for all possibilities.

Current Status by Status Code

Gets the current status by status.

<?php
 $this->getClient()->getCurrentStatusByStatus((new CurrentStatusByStatus())
 ->setShipment(
 (new Shipment())
 ->setStatusCode('5')
)
);

	statusrequest

	CurrentStatusByStatus - required

The CurrentStatusByStatus object. Check the API documentation for all possibilities.

Current Status by Phase Code

Gets the current status by phase code. Note that the date range is required.

<?php
 $this->getClient()->getCurrentStatusByReference((new CurrentStatusByPhase())
 ->setShipment(
 (new Shipment())
 ->setPhaseCode('5')
 ->setDateFrom(date('d-m-Y H:i:s', strtotime('-7 days'))
 ->setDateTo(date('d-m-Y H:i:s')
)
);

	statusrequest

	CurrentStatusByPhase - required

The CurrentStatusByPhase object. Check the API documentation for all possibilities.

Complete Status by Barcode

Gets the complete status by Barcode

<?php
 $this->getClient()->getCompleteStatus((new CompleteStatus())
 ->setShipment(
 (new Shipment())
 ->setBarcode('3SDEVC98237423')
)
);

	statusrequest

	CompleteStatus - required

The CompleteStatus object. Check the API documentation for all possibilities.

Complete Status by Reference

Gets the complete status by reference. Note that you must have set the reference on the shipment label first.

<?php
 $this->getClient()->getCompleteStatusByReference((new CompleteStatusByReference())
 ->setShipment(
 (new Shipment())
 ->setReference('myref')
)
);

	statusrequest

	CompleteStatusByReference - required

The CompleteStatusByReference object. Check the API documentation for all possibilities.

Complete Status by Status Code

Gets the complete status by status.

<?php
 $this->getClient()->getCompleteStatusByStatus((new CompleteStatusByStatus())
 ->setShipment(
 (new Shipment())
 ->setStatusCode('5')
)
);

	statusrequest

	CompleteStatusByStatus - required

The CompleteStatusByStatus object. Check the API documentation for all possibilities.

Complete Status by Phase Code

Gets the complete status by phase code. Note that the date range is required.

<?php
 $this->getClient()->getCompleteStatusByReference((new CompleteStatusByPhase())
 ->setShipment(
 (new Shipment())
 ->setPhaseCode('5')
 ->setDateFrom(date('d-m-Y H:i:s', strtotime('-7 days'))
 ->setDateTo(date('d-m-Y H:i:s')
)
);

	statusrequest

	CompleteStatusByPhase - required

The CompleteStatusByPhase object. Check the API documentation for all possibilities.

Get Signature

Gets the signature of the shipment when available. A signature can be accessed by barcode only.

$this->getClient()->getSignature(
 (new GetSignature())
 ->setShipment((new Shipment)
 ->setBarcode('3SDEVC23987423')
)
);

It accepts the following arguments

	getsignature

	GetSignature - required

The GetSignature object. It needs to have one Shipment set with a barcode.

Delivery date service

Note

PostNL API documentation for this service:

https://developer.postnl.nl/apis/deliverydate-webservice

Use the delivery date webservice to determine the delivery and shipping date.
You can use this service to calculate the dates ‘live’ and to make sure you do not promise your customers any timeframes that are no longer available.

Get the Delivery Date

Here’s how you can retrieve the closest delivery date:

<?php

$cutoffTime = '15:00:00';
$dropoffDays = [1 => true, 2 => true, 3 => true, 4 => true, 5 => true, 6 => false, 7 => false];
foreach (range(1, 7) as $day) {
 if (isset($dropoffDays[$day])) {
 $cutOffTimes[] = new CutOffTime(
 str_pad($day, 2, '0', STR_PAD_LEFT),
 date('H:i:00', strtotime($cutoffTime)),
 true
);
 }
}
$deliveryDate = $postnl->getDeliveryDate(
 (new GetDeliveryDate())
 ->setGetDeliveryDate(
 (new GetDeliveryDate())
 ->setAllowSundaySorting(false)
 ->setCountryCode('NL')
 ->setCutOffTimes($cutOffTimes)
 ->setHouseNr('66')
 ->setOptions(['Morning', 'Daytime'])
 ->setPostalCode('2132WT')
 ->setShippingDate(date('d-m-Y H:i:s'))
 ->setShippingDuration('1')
)
);

The result will be a GetDeliveryDateResponse. Calling getDeliveryDate on this object will return the delivery date as a string in the d-m-Y H:i:s PHP date format.

The function accepts the following arguments

	deliverydaterequest

	GetDeliveryDate - required

The GetDeliveryDate request. See the API documentation for the possibilities.
As shown in the example you will need to provide as many details as possible to get accurate availability information.

Get the Shipping Date

The Shipping Date service almost works in the same way as the Delivery Date service, except this time you provide the actual delivery date in order to calculate the closest shipping date.

<?php

$cutoffTime = '15:00:00';
$dropoffDays = [1 => true, 2 => true, 3 => true, 4 => true, 5 => true, 6 => false, 7 => false];
foreach (range(1, 7) as $day) {
 if (isset($dropoffDays[$day])) {
 $cutOffTimes[] = new CutOffTime(
 str_pad($day, 2, '0', STR_PAD_LEFT),
 date('H:i:00', strtotime($cutoffTime)),
 true
);
 }
}
$deliveryDate = $postnl->getDeliveryDate(
 (new GetDeliveryDate())
 ->setGetDeliveryDate(
 (new GetDeliveryDate())
 ->setAllowSundaySorting(false)
 ->setCountryCode('NL')
 ->setCutOffTimes($cutOffTimes)
 ->setHouseNr('66')
 ->setOptions(['Morning', 'Daytime'])
 ->setPostalCode('2132WT')
 ->setShippingDate(date('d-m-Y H:i:s'))
 ->setShippingDuration('1')
)
);

The function accepts the following arguments

	shippingdaterequest

	GetSentDate - required

The GetSentDate request. See the API documentation for the possibilities.
As shown in the example you will need to provide as many details as possible to get accurate availability information.

Timeframe service

Note

PostNL API documentation for this service:

https://developer.postnl.nl/apis/timeframe-webservice

	timeframes

	GetTimeframes - required

The GetTimeframes request object. See the API documentation for more details.

Location service

Note

PostNL API documentation for this service:

https://developer.postnl.nl/apis/location-webservice

The location service allows you to retrieve a list of locations for the given postcode or coordinates.

Get Nearest Locations

Here’s an example of how you can retrieve the nearest location by postcode:

<?php
$postnl->getNearestLocations(
 (new GetNearestLocations())
 ->setCountrycode('NL')
 ->setLocation(
 (new Location())
 ->setAllowSundaySorting(false)
 ->setDeliveryOptions(['PG'])
 ->setOptions(['Daytime'])
 ->setHouseNr('66')
 ->setPostalcode('2132WT')
)
);

	nearestlocations

	GetNearestLocations - required

The GetNearestLocations request object. See the API documentation for more details.

Get Nearest Locations by Coordinates

You can also get the locations by specifying a bounding box. One can be drawn by providing the North-West and South-East corner of the box:

<?php

 $postnl->getLocationsInArea(
 (new GetLocationsInArea())
 ->setCountrycode('NL')
 ->setLocation(
 (new Location())
 ->setAllowSundaySorting(false)
 ->setDeliveryDate(date('d-m-Y', strtotime('+1 day')))
 ->setDeliveryOptions([
 'PG',
])
 ->setOptions([
 'Daytime',
])
 ->setCoordinatesNorthWest(
 (new CoordinatesNorthWest())
 ->setLatitude((string) 52.156439)
 ->setLongitude((string) 5.015643)
)
 ->setCoordinatesSouthEast(
 (new CoordinatesNorthWest())
 ->setLatitude((string) 52.017473)
 ->setLongitude((string) 5.065254)
)
)
);

This function accepts the arguments:

	locationsinarea

	GetLocationsInArea - required

The GetLocationsInArea request object. See the API documentation for more details.

HTTP Client

By default the library will use cURL or Guzzle when available. You can always switch HTTP clients as follows:

<?php
$postnl = new PostNL(...);
$postnl->setHttpClient(\ThirtyBees\PostNL\HttpClient\CurlClient::getInstance());

You can create a custom HTTP Client by implementing the \ThirtyBees\PostNL\HttpClient\ClientInterface interface.

Caching

PSR-6 caching is supported, which means you can grab any caching library for PHP that you like and plug it right into this library.

Note that not all services can be cached. At the moment cacheable services are:

	Labelling webservice

	Timeframes webservice

	Location webservice

	Deliverydate webservice

	Shippingstatus webservice

To enable caching for a certain service you can use the following:

<?php
use Cache\Adapter\Filesystem\FilesystemCachePool;
use League\Flysystem\Adapter\Local;
use League\Flysystem\Filesystem;

// Cache in the `/cache` folder relative to this directory
$filesystemAdapter = new Local(__DIR__.'/');
$filesystem = new Filesystem($filesystemAdapter);

$postnl = new PostNL(...);

$labellingService = $postnl->getLabellingService();
$labellingService->cache = new FilesystemCachePool($filesystem);

// Set a TTL of 600 seconds
$labellingService->ttl = 600;

// Using a DateInterval (600 seconds)
$labellingServiceervice->ttl = new DateInterval('PT600S');

// Setting a deadline instead, useful for the timeframe service, so you can cache until the cut-off-time or
// until the next day
$labellingServiceervice = $postnl->getTimeframeService();
$labellingService->ttl = new DateTime('14:00:00');

Note

This example used the Flysystem (filesystem) cache. An extensive list of supported caches can be found on this page [https://www.php-cache.com/en/latest/].

Logging

Requests and responses can be logged for debugging purposes.
In order to enable logging you will need to pass a PSR-3 compatible logger.

<?php
use League\Flysystem\Adapter\Local;
use League\Flysystem\Filesystem;

use Psr\Log\LogLevel;
use wappr\Logger;

// Initialize the file system adapter
$logfs = new Filesystem($adapter);

// Set the DEBUG log level
$logger = new Logger($logfs, LogLevel::DEBUG);

// Set the filename format, we're creating one file for every minute of request/responses
$logger->setFilenameFormat('Y-m-d H:i');

// Set this logger for all services at once
$postnl->setLogger($logger);

// Set the logger for just the Labelling service
$postnl->getLabellingService()->setLogger($logger);

Note

This example used the Wappr logger. You can use any logger you like, as long as it implements the PSR-3 standard.
The log level needs to be set at DEBUG.

Authors

	Michael Dekker [https://github.com/firstred] <michael@thirtybees.com> (maintainer)

	niccifor [https://github.com/niccifor] (contributor)

Index

 _static/comment-bright.png

_images/positions.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/mergedlabels.png
Franco

ave

Potordo AUTier
Bidorgjkstraat 9 a bis
3521VA Utrecht

“3SDEVCo87530354"

1 Colo

Franco
posmu ave
Potor da Fuer
Bidorijsiraat9 a bis
3521VA Utrecht

1 Collo

*3SDEVCS87350802"

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to the thirty bees’ PostNL PHP library documentation!

 		
 Overview

 		
 Requirements

 		
 Installation

 		
 Bleeding edge

 		
 License

 		
 Contributing

 		
 Guidelines

 		
 Running the tests

 		
 Quickstart

 		
 Making a Request

 		
 Requesting timeframes, locations and the delivery date

 		
 Requesting a merged label

 		
 Building Requests

 		
 Sending concurrent requests

 		
 Using Response objects

 		
 Services

 		
 Barcode service

 		
 Generate a single barcode

 		
 Generate a barcode by country code

 		
 Generate multiple barcodes by using country codes

 		
 Labelling service

 		
 Generate a single label

 		
 Generate multiple shipment labels

 		
 Confirming service

 		
 Shipping status service

 		
 Current Status by Barcode

 		
 Current Status by Reference

 		
 Current Status by Status Code

 		
 Current Status by Phase Code

 		
 Complete Status by Barcode

 		
 Complete Status by Reference

 		
 Complete Status by Status Code

 		
 Complete Status by Phase Code

 		
 Get Signature

 		
 Delivery date service

 		
 Get the Delivery Date

 		
 Get the Shipping Date

 		
 Timeframe service

 		
 Location service

 		
 Get Nearest Locations

 		
 Get Nearest Locations by Coordinates

 		
 HTTP Client

 		
 Caching

 		
 Logging

 		
 Authors

_static/up-pressed.png

_static/up.png

_static/plus.png

